

A detailed anatomical illustration of a dental arch, likely the upper arch, showing the maxilla. Two dental implants are positioned in the bone, each supporting a portion of a fixed dental bridge. The bridge spans the gap where natural teeth would be. The surrounding tissue is depicted in shades of pink and red, and the bone structure is shown in a light beige color.

SECOND EDITION

FULL-ARCH IMPLANT REHABILITATION

ARUN K. GARG, DMD

FULL-ARCH IMPLANT REHABILITATION
SECOND EDITION

One book, one tree: In support of reforestation worldwide and to address the climate crisis, for every book sold Quintessence Publishing will plant a tree (<https://onetreeplanted.org/>).

Library of Congress Control Number: 2025944354

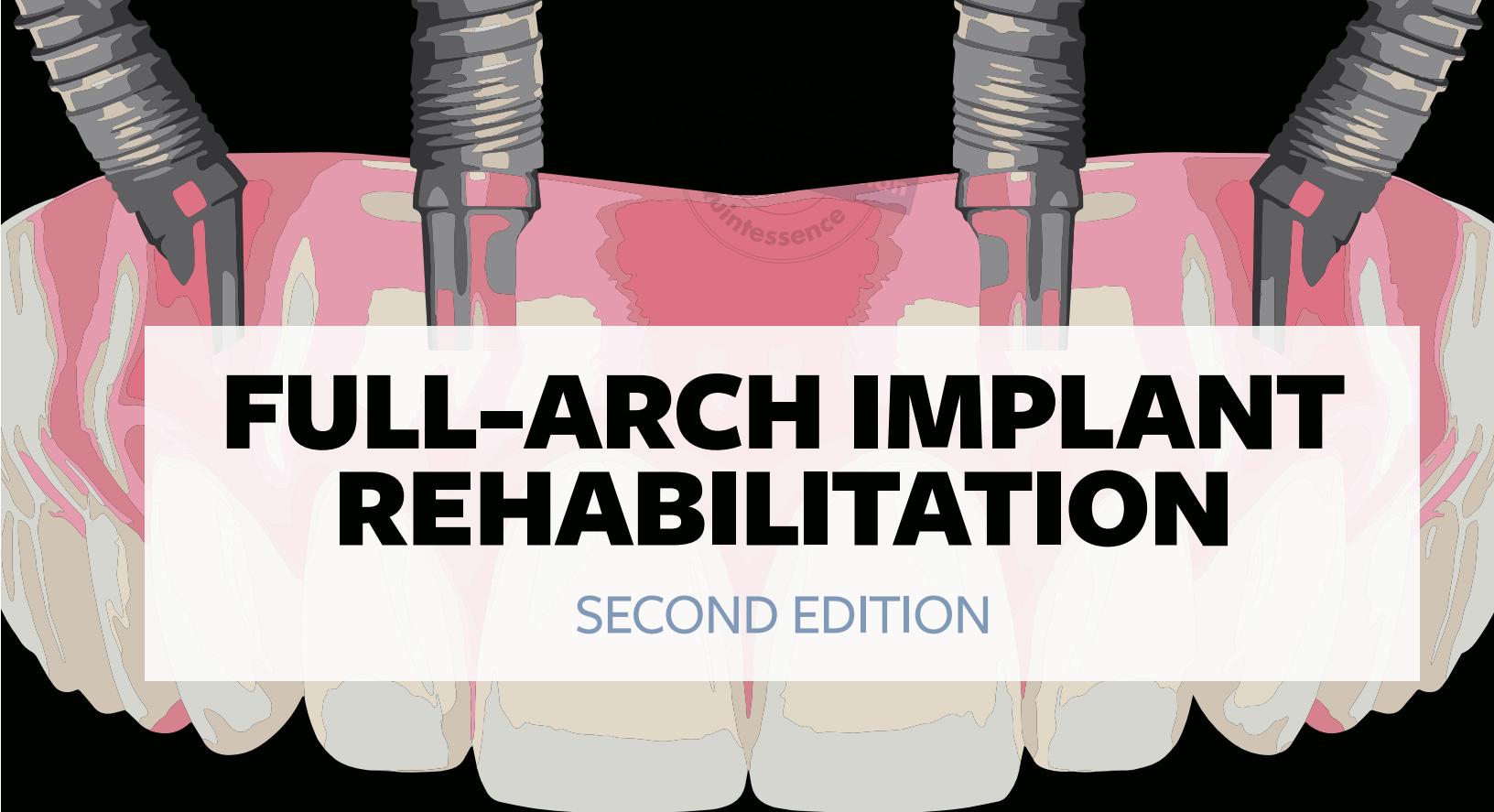
A CIP record for this book is available from the British Library.

ISBN: 978-1-64724-198-8

© 2026 Quintessence Publishing Co, Inc

Quintessence Publishing Co, Inc
411 N Raddant Road
Batavia, IL 60510
www.quintessence-publishing.com

5 4 3 2 1


All rights reserved. This book or any part thereof may not be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

Editor: Leah Huffman

Design: Sue Zubek

Production: Tracy Tomkowiak

Printed in Croatia

FULL-ARCH IMPLANT REHABILITATION

SECOND EDITION

ARUN K. GARG, DMD

Founder and Director

Garg Institute

Miami Beach, Florida

Former Professor of Surgery

Division of Oral and Maxillofacial Surgery

Department of Surgery

Leonard M. Miller School of Medicine

University of Miami

Miami, Florida

 QUINTESSENCE PUBLISHING

Berlin | Chicago | Tokyo

Barcelona | London | Milan | Paris | Prague | Seoul | Warsaw

Beijing | Istanbul | Sao Paulo | Sydney | Zagreb

PREFACE TO THE SECOND EDITION

When the first edition of *Full-Arch Implant Rehabilitation* was released, my goal was simple: to provide a clear, practical, and comprehensive roadmap for clinicians who wanted to elevate their practice with predictable full-arch solutions. The overwhelming response from colleagues worldwide confirmed what I had long believed—that full-arch implant rehabilitation (FAIR) represents not only the most rewarding area of implant dentistry but also one of the most transformative treatments we can offer patients.

Since that first publication, the science, technology, and clinical workflows surrounding the All-on-X concept have continued to evolve rapidly. Digital dentistry has moved from being a luxury to becoming an expectation. Advances in planning software, guided surgery, restorative materials, and laboratory protocols have reshaped how we deliver treatment. At the same time, patient demand for immediate, life-changing results has never been greater.

This second edition reflects that evolution. Every chapter has been carefully updated, expanded, and refined to incorporate the latest evidence, digital protocols, and clinical pearls from my decades of teaching and

practice. New sections address the nuances of digital scanning, virtual treatment planning, prosthetic materials, and the integration of platelet-rich plasma (PRP)/platelet-rich fibrin (PRF) and biologics to enhance surgical outcomes. Throughout, the emphasis remains the same: providing practical, step-by-step strategies that clinicians can implement immediately in their practices.

The book is also deeply personal. Over two decades of teaching tens of thousands of dentists around the world, I have witnessed how mastery of full-arch rehabilitation transforms not only dental practices but entire lives—restoring patients' confidence through their smiles and reigniting clinicians' passion and growth in their careers.

I am profoundly grateful to the countless colleagues, students, and patients who have taught me, challenged me, and inspired me along the way. I am equally grateful to Quintessence Publishing for their continued commitment to advancing dental education at the highest level.

It is my hope that this second edition will serve not only as a technical guide but also as a source of inspiration—reminding clinicians that when we restore a full arch, we are restoring not just teeth but also dignity, confidence, and quality of life.

CONTENTS

- 1.** Addressing Patient-Perceived Barriers to Full-Arch Rehabilitation **1**
- 2.** Evolution of the FAIR Protocol **5**
- 3.** History of Tilted Implants with an Immediate Prosthesis **13**
- 4.** Identifying and Evaluating Candidates **19**
- 5.** The FAIR Technique and Its Modifications **30**
- 6.** Treating the Fully Edentulous Mandible **40**
- 7.** Treating the Fully Edentulous Maxilla **57**
- 8.** Treating the Partially Edentulous Mandible **78**
- 9.** Treating the Partially Edentulous Maxilla **94**
- 10.** FAIR Prosthetic Protocols **106**
- 11.** Potential Complications **116**
- 12.** Role of CBCT in the FAIR Protocol **123**
- 13.** The FAIR Digital Workflow **127**
- 14.** Integrating Photogrammetry into the FAIR Protocol **145**
- 15.** Integrating Facial Scanning and Digital Workflows into the FAIR Protocol **153**
John Heimke and Arun K. Garg
- 16.** Marketing Your Full-Arch Therapy Practice **163**
Greg Essenmacher and Arun K. Garg
- Index **175**

ADDRESSING PATIENT-PERCEIVED BARRIERS TO FULL-ARCH REHABILITATION

Full-arch implant rehabilitation (FAIR) is one of the many recent innovations in implant therapy designed to resolve the functional and esthetic problems of the millions of edentulous and nearly edentulous patients worldwide. This chapter provides guidelines for educating patients and showing them how FAIR can meet their dental needs. While this book focuses primarily on the physiologic aspects of dental restoration, it is also important to consider patient acceptance. Clinicians must understand that lack of knowledge is a significant barrier to patient acceptance of FAIR—and work to overcome it. Treatment success depends on the dentist's ability to first manage any psychosocial circumstances that might keep the patient from choosing the best rehabilitation procedure offered.

The rest of this book describes how the FAIR protocol works, who it should be used for, and methods for successfully implementing it in different patients. Several chapters describe step-by-step treatments with detailed clinical photographs documenting every stage, from initial assessment to prosthesis delivery. This introductory chapter equips dentists to confidently manage any patient-perceived barriers to dental rehabilitation, including anxieties concerning finances, esthetic/

functional outcomes, and the perceived complexities of FAIR clinical procedures.

Patients and Edentulism

Tooth decay and periodontal disease are the most common causes of tooth loss. According to the Centers for Disease Control and Prevention (CDC), “adequate personal, professional, and population-based preventive practices, and advancements in dental treatment have helped ensure tooth retention throughout life.”¹ Yet despite CDC data showing that edentulism rates for older adults have declined over the last several decades, a large segment of the aging population in the US and the world will still suffer from partial or complete edentulism within the next decade. While it is true that tooth loss is less prevalent today due to the continuity of professional and personal dental care over a person's lifetime, aging populations worldwide continue to increase the number of older adults prone to experiencing edentulism.²⁻⁴ Furthermore, partial and complete edentulism can develop due to a variety of reasons, even when dental practitioners have provided conscientious care and their patients follow proper dental hygiene routines. In cases of inadequate professional care and/or poor patient hygiene, the incidence of edentulism can soar.^{5,6}

Dental professionals must be ready to restore the dental function (chewing and speech) of edentulous patients and improve their quality of life with restored esthetics—giving them back a confident smile and laugh. Furthermore, these goals must be achieved with a minimal number of procedures at an affordable cost, without sacrificing the quality or longevity of treatment.

01

Fig 1-1 Tilting the posterior implants (and possibly the anterior implants as well) is key for obtaining adequate implant anchorage in a bone-deficient arch.

Fortunately, patients can choose from a range of care options for both preventing and managing edentulism. Dentists must be well-informed about the breadth of restorative options available as well as the many obstacles patients face in choosing one of those options. Clinicians must be knowledgeable about not only the various physiologic treatment options but also the psychosocial circumstances that can prevent patients from embracing certain options.⁷⁻¹²

Introducing FAIR

FAIR is just one of several modern dental protocols that have been developed to immediately restore both the esthetic and functional aspects of the dentition in one or both arches, even in the highly atrophic mandible and maxilla.¹³⁻¹⁶ It offers patients full-arch prostheses that are immediate, fixed, loaded, esthetically pleasing, highly functional, inexpensive, maintainable, and reliable. The low-morbidity surgical and provisional restoration techniques performed as part of FAIR are done in a single visit. Usually only four or five implants are placed, including posterior tilted implants that take full advantage of the available bone and often eliminate the need for bone grafting (Fig 1-1). Generally, the total rehabilitation takes only a few hours of restorative/prosthetic procedures and provides the patient with esthetics and function far superior to that offered by traditional dentures. FAIR also has the capacity to halt and even reverse alveolar bone deterioration via

implant-stimulated bone growth within the jaw, similar to that induced by natural tooth roots.^{17,18} Subsequent chapters describe the specific methods for choosing and treating patients with FAIR to restore full-arch function and esthetics.

Psychosocial Barriers to FAIR Treatment

FINANCES

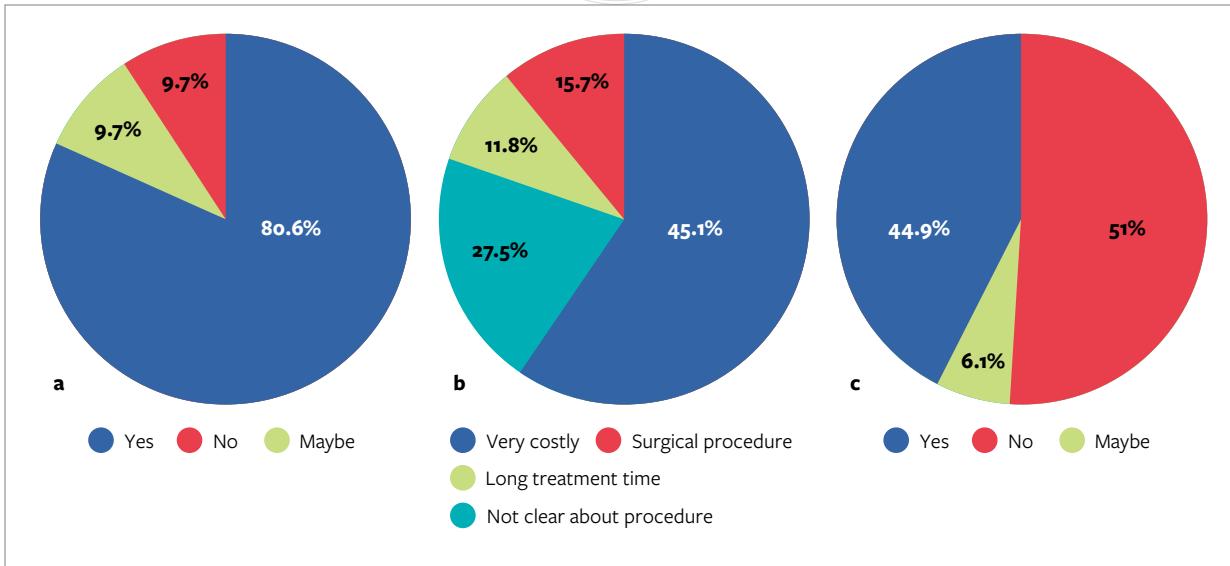
As noted by the CDC, despite the well-documented reduction in tooth loss in the US, several segments of the population show a persistent susceptibility to single and multiple tooth loss. Tooth loss is associated with three major factors: lack of education, low income, and smoking.¹ Of course, edentulism is also more common among older Americans. A 2010 study indicated that 16.9% of US adults 65 years and older and 14.2% of adults aged 65 to 74 years were edentulous.¹ Though many potential FAIR candidates have health or dental insurance that covers a portion of dental implant rehabilitation, the patient typically still assumes the major share of the financial burden of these elective dental procedures, which may prevent them from receiving care.

It is not only those with moderate or low income who struggle with dental challenges. A significant percentage of patients with six-figure incomes also experience tooth loss, and many relatively prosperous members of the baby boom generation who have reached retirement age also require full- or partial-arch rehabilitation.^{19,20}

Fig 1-2 In descending order of importance, the following facial components are predictive factors for the esthetic appearance of the smiling male face: mouth, eyes, chin region, and nose.²⁵ These results suggest that for many people, an improvement in smile esthetics is likely to have extended positive effects on perceived facial attractiveness compared with other procedures (eg, rhinoplasty).

The perceived association of edentulism with lower socioeconomic status may itself make patients who could otherwise afford dental care reluctant to pay for dental restoration if the cost is perceived as prohibitive.²¹ Clinicians should also not assume that their wealthier patients are not cost-conscious, especially after those patients have already retired.

ESTHETIC AND FUNCTIONAL OUTCOMES


In addition to financial considerations, patient perceptions regarding esthetic and functional outcomes may also contribute to reluctance to commit to treatment.²² Patients view good dental care as directly resulting in improved dental function and overall health. In addition to believing that proper dental care can improve overall health, patients generally believe that when the dental procedure is complete, they will be satisfied with both the functional and esthetic outcomes.¹² Patients rank the importance of orofacial appearance (for example, an attractive smile and laugh) on par with pain and function when it comes to making decisions about whether to accept dental care.²³ Don't underestimate the value of esthetics in patient perceptions concerning dental care, particularly for procedures in the esthetic zone. Patients

usually recognize the critical role that their smile and eyes play in social life.²⁴⁻²⁶

The perception of what is esthetic varies from patient to patient. In an effort to objectively quantify the results of esthetic zone procedures, researchers have used both intraoral and extraoral criteria, including general facial esthetics and the measurement of soft tissues, the smile/lip line, and incisor size and position.²⁴ Researchers have also attempted to determine the relative importance of individual facial features (for example, the chin, nose, and eyes) within the overall facial appearance of patients. The mouth and eyes are consistently rated as high predictors of broad esthetic appeal (Fig 1-2). Restorative dentists should consider the implications of these studies when collaborating with medical professionals specializing in other areas of facial restoration and esthetics.²⁵

PATIENT PERCEPTION OF TREATMENT COMPLEXITIES

Many candidates for FAIR procedures believe that FAIR and similar protocols are overly complex. This view is based on the perception that smile-related esthetics and masticatory/speaking problems are relatively

Fig 1-3 The results of a cross-sectional survey of 100 dental patients revealed that 20% of them were either unaware of or unsure regarding implant therapy as a viable treatment option for the replacement of missing teeth. Only 45% expressed a positive attitude toward implant therapy and willingness to accept the treatment if needed.²⁹ The graphs show how patients responded to the following questions: (a) Are you aware of implant therapy as a treatment option for missing teeth? (b) What is your reason for not opting for implant therapy (if needed)? (c) Are you willing to receive more information about implant therapy?

simple to correct via traditional, less complicated, and less costly means—especially with conventional dental appliances like complete dentures.²⁷ As a result, only a relatively small percentage of patients take advantage of the quality-of-life improvements offered by FAIR. A lack of patient knowledge about the detrimental aspects of prolonged conventional denture wear is perhaps the most crucial patient perception to correct. Patients must be shown how traditional dentures can compound esthetic and mastication problems and contribute to biologic degradation of the arches.

Patients also perceive several specific drawbacks to implant rehabilitation, including the need for more than one surgical procedure (resulting in increased cost, prolonged pain, and added inconvenience) and the required healing time (primarily because of its adverse effects on eating). However, these same patients also acknowledge the significant advantages to dental and general health and improved quality of life that implant rehabilitation provides.²⁸

Generally, fear and pain rank high as deterrents to dental treatment, with dental procedure fears being higher among women than men. Patients mostly fear needle injections, tooth drilling, and dental surgery

based on the pain they associate with these procedures. Good pain management and a careful explanation of procedures can help prepare patients to undergo the necessary steps of rehabilitation. Patients may be reassured to know that the quality of recovery is not affected much by whether one implant or several are placed, so fears about increased pain and inconvenience when more implants are placed are generally unwarranted.²⁸

Finally, many patients simply do not realize that they are qualified candidates for FAIR procedures (Fig 1-3). Misconceptions about FAIR can be dispelled by familiarizing patients with recent trends in dental implant use, particularly in the US, including advances in digitally enhanced dentistry and bone regeneration procedures.^{19,29,30}

Conclusion

The FAIR protocol is one of the newest implant therapy innovations designed to treat one or both arches of edentulous or nearly edentulous patients. The prosthesis is immediate, fixed, esthetically pleasing, highly functional, inexpensive, and maintainable, and the procedure can often be performed without the need for bone grafting.

INDEX

Page numbers followed by "t" denote tables; "f" denote figures; and "b" denote boxes.

A

Abutments
angled, 46f, 66f, 85f, 100f
cuff height of, 46, 66, 100
custom, 7f
in fully edentulous mandible, 44–47, 46f
healing, 148
multiunit, 14f, 33, 36f–37f, 47, 51f, 66, 85f, 108, 160f
in partially edentulous mandible, 83–86, 85f–86f
straight, 66, 83
tilted, 16
Acrylic teeth, 113
Additive manufacturing, 158
ALARA, 126
Alveolar ridge reduction, 97, 98f
Anchorage, of implants, 14–15
Anesthesia, 42
Angled abutments, 46f, 66f, 85f, 100f
Angled implants, in edentulous maxilla, 15
Apertures, 36
Artificial intelligence, 143
Augmented reality, 143
Avatar patient, 154f, 154–155
Axial implants, 10, 10f, 31f

B

Balanced articulation, 15
Bite registration, 28, 33, 33f, 36, 51f, 71f
Bone augmentation, 35
Bone contouring, 34
Bone density, 25–28
Bone expanders, 63, 63f, 97
Bone flaring, 47, 81
Bone grafting, 5
Bone loss, 116, 117f
Bone reduction guide, 141f
Bone resorption, 25–28, 26f–27f
Bone volume, 25–28, 26f–27f
Branding of practice, 166–167
Bupivacaine, 42, 59, 97
Burs
Lindemann bone, 61, 62f
ridge-contouring, 34, 35f

C

Candidates
age range of, 19

classification of, 23, 24f
complaints of, 20–21
concerns of, 20
dental history of, 21, 22f–23f
denture history of, 20–21
deterring of, 40
evaluation of, 20t, 20–23
examinations of, 22
expectations of, 20–21
extraoral examination of, 22
intraoral examination of, 22
overview of, 19–20
radiographic analysis of, 22–23
Cantilever length, 13, 13f, 106f
Case classification, 23, 24f
Case selection, 165
CBCT
anatomy assessments using, 123, 124f–125f
artifacts associated with, 126
bone tissue evaluations using, 123, 124f–125f, 157
description of, 129, 154
indications for, 123
limitations of, 126
surgical guides fabricated using, 124–126
treatment planning for, 123–126
Clinical coordinator, 172
Closed-tray technique, for impressions, 110
Complications
bone loss, 116, 117f
definitive prosthesis, 119–120, 119f–120f
esthetic, 117f, 117–118
fractures, 119–120
hygiene-related, 118
infection, 117
patient-related, 118, 118f
prosthesis-related, 118–121
provisional prosthesis, 118–119
surgical, 116–117, 117f
wear-related, 120
Coronal flaring, 63

D

D1 bone, 14
D2 bone, 14
Definitive prosthesis
adjustments to, 114
complications of, 119–120, 119f–120f
digital milling of, 159
fabrication and delivery of
description of, 112–113, 130, 160, 161f
framework, 112–113
for fully edentulous maxilla, 68, 68f–69f
for partially edentulous maxilla, 101

wax try-in, 112
final impressions for, 110–112
fracture of, 119–120
interarch space for, 119
nonpassive fit of, 121f
passive fit of, 113–114, 120
preliminary impressions for, 110–112
seating of, 113, 114
teeth in, 113
Delayed loading of implants, 13
Dental history, 21, 22f–23f
Dental laboratory, 165, 165b
Dental service organization, 166
Dentist, 164–165
Denture
buccal flange of, 58, 58f
conventional, 9f
duplicate template, 107
fixed prosthesis from, 36
immediate, 33, 33f, 107–108
implant-supported prosthesis conversion of, 107–108
intaglio surface of, 107f
quality of life affected by, 5
removable. See Removable denture.
Denture history, 20–21
Digital intraoral scanning, 127
Digital records, 158f, 159
Digital technology
benefits of, 127–128
limitations of, 128
trends in, 143–144
Digital workflow
advantages of, 144, 162
benefits of, 127–128, 129b
clinical impact of, 162
digital data acquisition, 128–129
follow-up, 130–131
implant surgery, 130
intraoral scanners, 156, 156f
limitations of, 128, 129b
mandibular application of, 131, 137f–143f
maxillary application of, 131, 131f–137f
postoperative care, 130–131
prosthetic rehabilitation, 130
steps involved in, 128–131, 130f–143f, 158f–161f, 159–160
treatment planning, 128–129, 159
Direction indicators, 46, 46f, 65, 66f, 100f
Direct-to-consumer marketing, 172
Distal tilted implants, 44
DSO. See Dental service organization.
DTC marketing. See Direct-to-consumer marketing.
Dynamic navigation, 125

E

Edentulism
causes of, vi
dental function restoration in, vi
full. See Fully edentulous mandible; Fully edentulous maxilla.
mandibular. See Fully edentulous mandible; Partially edentulous mandible.
maxillary. See Fully edentulous maxilla; Partially edentulous maxilla.
in older adults, 1
partial. See Partially edentulous mandible; Partially edentulous maxilla.
Empathy, 168
Esthetic complications, 117f, 117–118
Esthetics
in candidate selection, 21
facial features in, 2, 2f
patient perceptions regarding, 2
Extraoral examination, 22

F

Facial scanning, 153, 156f, 157
FAIR practice
branding of, 166–167
dedicated phone line, 168
empathy, 168
information sharing, 168–169
marketing of, 172–174, 174b
patient experience touchpoints for, 167–168, 168b
referrals, 173–174
roadmap to success for, 164
staffing of, 169–172
terminology use in, 169
tracking of, 173
FAIR protocol
advantages of, 5, 6t, 20, 30, 40, 57
candidates for, 3, 3f. See also Candidates.
complexities of, patient perception of, 2–3
complications of. See Complications.
costs of, 163
description of, vi, 1, 5
disadvantages of, 9
drawbacks to, 3, 6t
esthetic outcomes of, 2
evolution of, 5–10, 6t, 7f–10f
financial barriers to, 1–2
functional outcomes of, 2
functionality provided by, 9, 9f
mandibular, 7f

motivation for learning, 163
principles of, 30b
psychosocial barriers to, 1–3
revenue from, 163
surgery in, 33–35, 34f
surgical guidelines, 30
tilted implants and. See Tilted implants.
FDBA. See Freeze-dried bone allograft.
Fear, 3
Fixed prosthesis, denture converted into, 36
Fixed prosthodontics, improvements in, 5
4D printing, 143
Framework, for definitive prosthesis, 113
Freeze-dried bone allograft, 78–79, 79f, 85f, 91f
Full-arch implant placement, maxillary, 7f–8f
Full-arch implant rehabilitation. See FAIR protocol.
Fully edentulous mandible
denture duplicate template for, 40–41, 41f
description of, 40
digital workflow application to, 140f–141f
guided surgery in, 50f–55f
models of, 41
preoperative procedure for, 40–41
surgical procedure for
abutment attachment, 44–47, 46f
anesthesia, 42
anterior implants, 43–44, 45f
flap reflection, 42–43
implant placement, 43–44
incision design, 42–43, 43f, 50f
overview of, 41–42
prosthesis placement and attachment, 48, 48f–49f
soft tissue measurements, 47
tilted implants, 43f, 44
tissue reflection, 42–43
treatment planning for, 40
Fully edentulous maxilla
bone augmentation for, 57
preoperative procedure for, 57–58
surgical procedure for
abutment attachment, 66–67
anesthesia, 59
case study of, 70f–75f
definitive prosthesis fabrication and delivery, 68, 68f–69f
denture conversion, 67
immediate dentures, 58, 59f
implant placement, 61–66, 62f–65f
incision design, 59f, 59–61
osteotomy, 61
overview of, 58–59
palatal flap, 60, 60f

preparation in, 58
provisional prosthesis, 75f
straight implants, 65
tilted implants, 64f, 64–65
time requirements, 58–59
tissue reflection, 59–61, 60f
timeline for, 57–58

G

GI-MASK, 36, 37f, 52f–53f, 72f–73f, 107
Grammetry, 157f, 157–158
Guided surgery
advantages of, 125b
in fully edentulous mandible, 50f–55f
implant placement using, 130

H

Healing abutments, 148
Hex driver, 47, 47f, 86f, 100
Hygiene, 109, 118

I

Immediate denture
description of, 33, 33f
implant-supported prosthesis conversion of, 107–108
Immediate loading, 130
Immediate provisionalization, 35–37, 36f–38f
Immediately loaded implants
prosthesis used for, 15
success rates for, 5
Implant(s)
anchorage of, 14–15
angulation of, 14
axial placement of, 10, 10f
delayed loading of, 13
direction indicators for, 46, 46f, 65, 66f
failure of, 116
in mandible, 33
in maxilla, 32
mobility of, 14–15
osseointegration of, 109, 130
outcomes of, factors guiding, 14–15
surgical guides in placement of, 125–126
teeth extraction before, 149f
tilted. See Tilted implants.
virtual placement of, 125
Implant company, 165–166
Implant stability quotient, 14–15
Implant-supported prosthesis, 107–108
Impressions
for definitive prosthesis, 110–112
for provisional prosthesis, 108, 110f
Inferior alveolar nerve, 31

Information sharing, 168–169

Interarch space, 59f, 119

Intraoral examination, 22

Intraoral scanners, 156, 156f

Intraoral scans, 153

ISQ. See Implant stability quotient.

L

Layered data integration, 153–154, 154f

Lead call team member, 170–171

Life expectancy, 9

Lindemann bone bur, 61, 62f

Lip line, 24–25, 25f

M

M-4 configuration, 16, 17f

Machine learning, 143

Mandible

bone resorption in, 27f

digital workflow application to, 131, 137f–143f

fully edentulous. See Fully edentulous mandible.

implant positioning in, 33

partially edentulous. See Partially edentulous mandible.

Marcaine, 42, 59

Marius bridge, 14

Marketing, 172–174

Master cast

final impressions for, 111, 111f

verification jig for, 111–112, 112f

Maxilla

bone, anchorage capacity of, 8f

bone resorption in, 26f

digital workflow application to, 131, 131f–137f

edentulous

anterior implants for, 32

crestal bone ridge of, 30

fully. See Fully edentulous maxilla.

partial. See Partially edentulous maxilla.

tilted implants in restoration of, 15–16, 15f–16f, 30

implant positioning in, 30–31, 31f

Mental nerve, 30

Midcrestal incision, 60

Mucoperiosteal flap, 31

Multiunit abutments, 14f, 33, 36f–37f, 47, 51f, 66, 85f, 108, 160f

N

Nasopalatine foramen, 31, 32f

Nasopalatine nerve, 59, 59f

O

Occlusion

balanced articulation in, 15

vertical dimension of, 33, 34f, 107, 139f

Older adults, edentulism in, 1

Open-tray technique, for impressions, 110

Orofacial appearance, 2

Osseointegration, 109, 130

Osteotomy

for tilted implants, 43

undersizing of, 44, 61

P

Pain, 3

Palatal flap, 60, 60f

Partially edentulous mandible

alveolar bone availability in, 79

autogenous blood concentrates in, 80f

bone augmentation in, 78

denture duplicate template for, 80f, 81, 82f

description of, 23, 24f

digital workflow application to, 137f

extraction sockets in, 78

illustration of, 78f

preoperative procedure in, 81

socket preservation in, 78

special considerations for, 79

surgical procedure in

abutment attachment, 83–86, 85f–86f, 90f

anterior implants, 83

case study of, 89f–91f

implant placement, 81, 83

incision design, 81, 82f, 89f

osteotomy, 90f

prosthesis fabrication and delivery, 86, 87f–88f

tilted implants, 81, 85f

tissue reflection, 81, 82f

Partially edentulous maxilla

bone augmentation for, 94

computed tomography of, 95

description of, 23, 24f

extraction sockets in, 94, 104

illustration of, 94f

preoperative procedure for, 95

socket preservation in, 94–95

surgical procedure in

abutment attachment, 100, 100f

anesthesia, 96–97

burs used in, 97

case study of, 101f–104f

definitive prosthesis fabrication and placement, 101

denture conversion, 100–101

denture duplicate template, 101f

direction indicators, 100, 100f

immediate denture, 96

implant placement, 97–100, 99f

incision design, 97, 98f

osteotomy, 97

overview of, 95–97

threaded implants, 97

tilted distal implants, 99–100

tissue reflection, 97, 98f–99f

Patient education and engagement, 144

Peri-implantitis, 44, 83, 99, 117, 117f

Periodontal disease, vi

Photogrammetry

advantages of, 145–146

commercial systems, 146

definition of, 145

description of, 157

FAIR application of, 146–152, 147f–151f

limitations of, 145–146

markers, 147, 147f, 150f

soft tissue scanning, 148–149, 149f–150f

Photographic series, 158f

Platelet-rich plasma, 64, 64f, 79, 80f, 91f, 99

Polymethyl methacrylate, 15, 41, 57, 95, 135f–136f

Posterior tilted implants

description of, 1, 1f

distal tilting of, 15f

Primary stability, 14

Prosthetic protocols

biomechanical factors, 106

definitive prosthesis. See Definitive prosthesis.

description of, 106

provisional prosthesis. See Provisional prosthesis.

Prototypes, 155, 159

Provisional prosthesis

CAD design of, 129

complications of, 118–119

delivery of, 108–109

denture conversion to implant-supported prosthesis, 107–108

fabrication of, 107

final impressions, 108

hygiene for, 109

Provisionalization, immediate, 35–37, 36f–38f

PRP. See Platelet-rich plasma.

Pterygoid implants, 16

R

Radiographic analysis, 22–23

Referrals, 173–174

Remote consultations, 143

Removable dentures
advantages of, 6t
disadvantages of, 6t
removable overdenture versus, 9f
Removable overdenture, 6, 9, 10f
Resonance frequency analysis, 15
Retromolar pads, 47
RFA. See Resonance frequency analysis.
Ridge-contouring burs, 34, 35f

S

Screw loosening or fracture, 119, 119f, 121
Screw-retained prosthesis, 101
Scripts, 169–170
Sheffield technique, 113
Simple screw test, 113
Sinus membrane, 61, 97
Smile Artist Approach, 155f, 155–156
Smile line, 24–25, 25f, 117f
Staffing, 169–172
Stereolithographic model, 57
STL model. See Stereolithographic model.
Straight abutments, 66
Surgical guides
CBCT fabrication of, 124–126
description of, 33, 164
fabrication of, 124–126, 129–130

T

Telemedicine, 143
3D avatar patient, 154f, 154–155
3D facial scans, 154, 156f, 157
3D printing, 125, 143, 158, 158f

Tilted implants
abutments for, 16
advantages of, 10, 10f, 13
angulation of, 14–16, 17f
apex of, 15
cantilever length of, 13, 13f
distal, 44, 64f
in edentulous maxilla, 15–16, 15f–16f, 30
FAIR procedures and, 14
in fully edentulous mandible, 43f, 44
in fully edentulous maxilla, 64f, 64–65
history of, 13–17
illustration of, 1f
M-4 configuration of, 16, 17f
osteotomies for, 43
in partially edentulous mandible, 81, 85f
in partially edentulous maxilla, 99–100
position of, 16, 17f
posterior, 1, 1f
primary stability of, 14
protocol for, 13
pterygoid implants, 16
tilt amount for, 35
types of, 15–16
V-4 configuration of, 16, 17f
zygomatic implants, 16
Titanium sleeves, 36–37, 36f–37f, 48f, 52f, 54f, 100, 140f
Tooth decay, vi
Tooth loss
causes of, vi
factors associated with, 1
Transition line, 25f
Treatment coordinator, 171–172

Treatment planning
bone density, 25–28
bone volume, 25–28, 26f–27f
case classification, 23, 24f
measurements in
distance to bone, 23–24
lip line, 24–25, 25f
smile line, 24–25, 25f
model evaluation, 28
questions for, 21b
Trough, 35, 35f

U

Unique selling position, 166–167

V

V-4 configuration, 16, 17f
Verification jig, 111–112, 112f–113f
Vertical dimension of occlusion, 33, 34f, 107, 139f
Virtual reality, 143

W

Wax try-in, 33
Wear-related complications, 120

Z

Zygomatic implants
placement of, 6, 8f
as tilted implants, 16

Although the benefits of implant rehabilitation are clear, only a small percentage of patients who could benefit from FAIR receive it. Dentists must be knowledgeable about the various treatment options available and understand how to present alternatives to patients. Additionally, dentists must understand and combat patient concerns and misconceptions that prevent them from undergoing the procedure. The FAIR protocol should be perceived by patients as simply another necessary step in the dental health care continuum.

References

- Chronic Disease Indicators: Oral Health. Centers for Disease Control and Prevention, 2025. <https://www.cdc.gov/cdi/indicator-definitions/oral-health.html>. Accessed 31 January 2025.
- Slade GD, Akinkugbe AA, Sanders AE. Projections of U.S. edentulism prevalence following 5 decades of decline. *J Dent Res* 2014;93:959–965.
- Sekundo C, Langowski E, Kilian S, Wolff D, Zenthöfer A, Frese C. Association of dental and prosthetic status with oral health-related quality of life in centenarians. *Int J Environ Res Public Health* 2021;18:13219.
- Atanda AJ, Livinski AA, London SD, et al. Tooth retention, health, and quality of life in older adults: A scoping review. *BMC Oral Health* 2022;22:185.
- Bracksley-O’Grady S, Anderson K, Masood M. Oral health academics’ conceptualisation of health promotion and perceived barriers and opportunities in dental practice: A qualitative study. *BMC Oral Health* 2021;21:165.
- Preisser JS, Moss K, Finlayson TL, Jones JA, Weintraub JA. Prediction model development and validation of 12-year incident edentulism of older adults in the United States. *JDR Clin Trans Res* 2023;8:384–393.
- Gyllensvård K, Qvarnström M, Wolf E. The dentist’s care-taking perspective of dental fear patients—A continuous and changing challenge. *J Oral Rehabil* 2016;43:598–607.
- Deeb G, Wheeler B, Jones M, Carrico C, Laskin D, Deeb JG. Public and patient knowledge about dental implants. *J Oral Maxillofac Surg* 2017;75:1387–1391.
- McCreat SJ. An analysis of patient perceptions and expectations to dental implants: Is there a significant effect on long-term satisfaction levels? *Int J Dent* 2017;2017:8230618.
- Maharjan A, Regmi S, Sagtani RA. Knowledge and awareness regarding dental implants among patients attending a tertiary care center. *JNMA J Nepal Med Assoc* 2018;56:578–581.
- Sidenö L, Hmaidouch R, Brandt J, von Krockow N, Weigl P. Satisfaction level in dental-phobic patients with implant-supported rehabilitation performed under general anaesthesia: A prospective study. *BMC Oral Health* 2018;18:182.
- Felgner S, Dreger M, Henschke C. Reasons for (not) choosing dental treatments—A qualitative study based on patients’ perspective. *PLoS One* 2022;17:e0267656.
- Gallucci GO, Avramou M, Taylor JC, Elpers J, Thalji G, Cooper LF. Maxillary implant-supported fixed prosthesis: A survey of reviews and key variables for treatment planning. *Int J Oral Maxillofac Implants* 2016;31(suppl):S192–S197.
- Messias A, Nicolau P, Guerra F. Different interventions for rehabilitation of the edentulous maxilla with implant-supported prostheses: An overview of systematic reviews. *Int J Prosthodont* 2021;34(suppl):S63–S84.
- Cattoni F, Chirico L, Merlone A, Manacorda M, Vinci R, Gherlone EF. Digital smile designed computer-aided surgery versus traditional workflow in “All on Four” rehabilitations: A randomized clinical trial with 4-years follow-up. *Int J Environ Res Public Health* 2021;18:3449.
- Caramês JMM, Marques DNDS, Caramês GB, Francisco HCO, Vieira FA. Implant survival in immediately loaded full-arch rehabilitations following an anatomical classification system—A retrospective study in 1200 edentulous jaws. *J Clin Med* 2021;10:5167.
- Fontão FNGK, Bittencourt D, Melo ACM, Acântara PR, da Rosa Possebon AP, Faot F. Can implant-retained fixed prostheses trigger bone response in the posterior region of edentulous mandibles? A 32-month cone-beam computerized tomography study analyzing bone height and density. *J Oral Implantol* 2021;47:478–483.
- Lee DJ, Moon ES, Stephen K, Liu J, Kim DG. Influence of dental implantation on bone mineral density distribution: A pilot study. *J Adv Prosthodont* 2022;14:143–149.
- Elani HW, Starr JR, Da Silva JD, Gallucci GO. Trends in dental implant use in the US, 1999–2016, and projections to 2026. *J Dent Res* 2018;97:1424–1430.
- Van de Winkel T, Heijens L, Listl S, Meijer G. What is the evidence on the added value of implant-supported overdentures? A review. *Clin Implant Dent Relat Res* 2021;23:644–656.
- Dye BA, Weatherspoon DJ, Lopez Mitnik G. Tooth loss among older adults according to poverty status in the United States from 1999 through 2004 and 2009 through 2014. *J Am Dent Assoc* 2019;150:9–23.e3.
- Su N, van Wijk A, Visscher CM. Psychosocial oral health-related quality of life impact: A systematic review. *J Oral Rehabil* 2021;48:282–292.
- John MT, Reissmann DR, Čelebić A, et al. Integration of oral health-related quality of life instruments. *J Dent* 2016;53:38–43.
- Frese C, Staehle HJ, Wolff D. The assessment of dentofacial esthetics in restorative dentistry: A review of the literature. *J Am Dent Assoc* 2012;143:461–466.
- Patusco V, Carvalho CK, Lenza MA, Faber J. Smile prevails over other facial components of male facial esthetics. *J Am Dent Assoc* 2018;149:680–687.
- Babeer WA, Bakhsh ZT, Natto ZS. The perception of smile attractiveness to altered vertical position of maxillary anteriors by various groups. *Medicine (Baltimore)* 2022;101:e28660.
- Saito H, Aichelmann-Reidy MB, Oates TW. Advances in implant therapy in North America: Improved outcomes and application in the compromised dentition. *Periodontol 2000* 2020;82:225–237.
- Kahn A, Masri D, Shalev T, Meir H, Sebaoun A, Chaushu L. Patients’ perception of recovery after dental implant placement. *Medicina (Kaunas)* 2021;57:1111.
- Rao A, Hegde C. A survey to assess the awareness and acceptance of dental implants among patients seeking prosthodontic rehabilitation. *J Evolution Med Dent Sci* 2021;10:1479–1482.
- Matsubara VH, Gurbuxani AP, Francis S, Childs RJ. Implant rehabilitation of edentulous maxilla in digital dentistry: A case report utilizing CAD/CAM technologies. *J Dent Res Dent Clin Dent Prospects* 2021;15:115–121.

INDEX

Page numbers followed by "t" denote tables; "f" denote figures; and "b" denote boxes.

A

Abutments
angled, 46f, 66f, 85f, 100f
cuff height of, 46, 66, 100
custom, 7f
in fully edentulous mandible, 44–47, 46f
healing, 148
multiunit, 14f, 33, 36f–37f, 47, 51f, 66, 85f, 108, 160f
in partially edentulous mandible, 83–86, 85f–86f
straight, 66, 83
tilted, 16
Acrylic teeth, 113
Additive manufacturing, 158
ALARA, 126
Alveolar ridge reduction, 97, 98f
Anchorage, of implants, 14–15
Anesthesia, 42
Angled abutments, 46f, 66f, 85f, 100f
Angled implants, in edentulous maxilla, 15
Apertures, 36
Artificial intelligence, 143
Augmented reality, 143
Avatar patient, 154f, 154–155
Axial implants, 10, 10f, 31f

B

Balanced articulation, 15
Bite registration, 28, 33, 33f, 36, 51f, 71f
Bone augmentation, 35
Bone contouring, 34
Bone density, 25–28
Bone expanders, 63, 63f, 97
Bone flaring, 47, 81
Bone grafting, 5
Bone loss, 116, 117f
Bone reduction guide, 141f
Bone resorption, 25–28, 26f–27f
Bone volume, 25–28, 26f–27f
Branding of practice, 166–167
Bupivacaine, 42, 59, 97
Burs
Lindemann bone, 61, 62f
ridge-contouring, 34, 35f

C

Candidates
age range of, 19

classification of, 23, 24f
complaints of, 20–21
concerns of, 20
dental history of, 21, 22f–23f
denture history of, 20–21
deterring of, 40
evaluation of, 20t, 20–23
examinations of, 22
expectations of, 20–21
extraoral examination of, 22
intraoral examination of, 22
overview of, 19–20
radiographic analysis of, 22–23
Cantilever length, 13, 13f, 106f
Case classification, 23, 24f
Case selection, 165
CBCT
anatomy assessments using, 123, 124f–125f
artifacts associated with, 126
bone tissue evaluations using, 123, 124f–125f, 157
description of, 129, 154
indications for, 123
limitations of, 126
surgical guides fabricated using, 124–126
treatment planning for, 123–126
Clinical coordinator, 172
Closed-tray technique, for impressions, 110
Complications
bone loss, 116, 117f
definitive prosthesis, 119–120, 119f–120f
esthetic, 117f, 117–118
fractures, 119–120
hygiene-related, 118
infection, 117
patient-related, 118, 118f
prosthesis-related, 118–121
provisional prosthesis, 118–119
surgical, 116–117, 117f
wear-related, 120
Coronal flaring, 63

D

D1 bone, 14
D2 bone, 14
Definitive prosthesis
adjustments to, 114
complications of, 119–120, 119f–120f
digital milling of, 159
fabrication and delivery of
description of, 112–113, 130, 160, 161f
framework, 112–113
for fully edentulous maxilla, 68, 68f–69f
for partially edentulous maxilla, 101

wax try-in, 112
final impressions for, 110–112
fracture of, 119–120
interarch space for, 119
nonpassive fit of, 121f
passive fit of, 113–114, 120
preliminary impressions for, 110–112
seating of, 113, 114
teeth in, 113
Delayed loading of implants, 13
Dental history, 21, 22f–23f
Dental laboratory, 165, 165b
Dental service organization, 166
Dentist, 164–165
Denture
buccal flange of, 58, 58f
conventional, 9f
duplicate template, 107
fixed prosthesis from, 36
immediate, 33, 33f, 107–108
implant-supported prosthesis conversion of, 107–108
intaglio surface of, 107f
quality of life affected by, 5
removable. See Removable denture.
Denture history, 20–21
Digital intraoral scanning, 127
Digital records, 158f, 159
Digital technology
benefits of, 127–128
limitations of, 128
trends in, 143–144
Digital workflow
advantages of, 144, 162
benefits of, 127–128, 129b
clinical impact of, 162
digital data acquisition, 128–129
follow-up, 130–131
implant surgery, 130
intraoral scanners, 156, 156f
limitations of, 128, 129b
mandibular application of, 131, 137f–143f
maxillary application of, 131, 131f–137f
postoperative care, 130–131
prosthetic rehabilitation, 130
steps involved in, 128–131, 130f–143f, 158f–161f, 159–160
treatment planning, 128–129, 159
Direction indicators, 46, 46f, 65, 66f, 100f
Direct-to-consumer marketing, 172
Distal tilted implants, 44
DSO. See Dental service organization.
DTC marketing. See Direct-to-consumer marketing.
Dynamic navigation, 125

E

Edentulism
causes of, vi
dental function restoration in, vi
full. See Fully edentulous mandible; Fully edentulous maxilla.
mandibular. See Fully edentulous mandible; Partially edentulous mandible.
maxillary. See Fully edentulous maxilla;
Partially edentulous maxilla.
in older adults, 1
partial. See Partially edentulous mandible; Partially edentulous maxilla.
Empathy, 168
Esthetic complications, 117f, 117–118
Esthetics
in candidate selection, 21
facial features in, 2, 2f
patient perceptions regarding, 2
Extraoral examination, 22

F

Facial scanning, 153, 156f, 157
FAIR practice
branding of, 166–167
dedicated phone line, 168
empathy, 168
information sharing, 168–169
marketing of, 172–174, 174b
patient experience touchpoints for, 167–168, 168b
referrals, 173–174
roadmap to success for, 164
staffing of, 169–172
terminology use in, 169
tracking of, 173
FAIR protocol
advantages of, 5, 6t, 20, 30, 40, 57
candidates for, 3, 3f. See also Candidates.
complexities of, patient perception of, 2–3
complications of. See Complications.
costs of, 163
description of, vi, 1, 5
disadvantages of, 9
drawbacks to, 3, 6t
esthetic outcomes of, 2
evolution of, 5–10, 6t, 7f–10f
financial barriers to, 1–2
functional outcomes of, 2
functionality provided by, 9, 9f
mandibular, 7f

motivation for learning, 163
principles of, 30b
psychosocial barriers to, 1–3
revenue from, 163
surgery in, 33–35, 34f
surgical guidelines, 30
tilted implants and. See Tilted implants.
FDBA. See Freeze-dried bone allograft.
Fear, 3
Fixed prosthesis, denture converted into, 36
Fixed prosthodontics, improvements in, 5
4D printing, 143
Framework, for definitive prosthesis, 113
Freeze-dried bone allograft, 78–79, 79f, 85f, 91f
Full-arch implant placement, maxillary, 7f–8f
Full-arch implant rehabilitation. See FAIR protocol.
Fully edentulous mandible
denture duplicate template for, 40–41, 41f
description of, 40
digital workflow application to, 140f–141f
guided surgery in, 50f–55f
models of, 41
preoperative procedure for, 40–41
surgical procedure for
abutment attachment, 44–47, 46f
anesthesia, 42
anterior implants, 43–44, 45f
flap reflection, 42–43
implant placement, 43–44
incision design, 42–43, 43f, 50f
overview of, 41–42
prosthesis placement and attachment, 48, 48f–49f
soft tissue measurements, 47
tilted implants, 43f, 44
tissue reflection, 42–43
treatment planning for, 40
Fully edentulous maxilla
bone augmentation for, 57
preoperative procedure for, 57–58
surgical procedure for
abutment attachment, 66–67
anesthesia, 59
case study of, 70f–75f
definitive prosthesis fabrication and delivery, 68, 68f–69f
denture conversion, 67
immediate dentures, 58, 59f
implant placement, 61–66, 62f–65f
incision design, 59f, 59–61
osteotomy, 61
overview of, 58–59
palatal flap, 60, 60f

preparation in, 58
provisional prosthesis, 75f
straight implants, 65
tilted implants, 64f, 64–65
time requirements, 58–59
tissue reflection, 59–61, 60f
timeline for, 57–58

G

GI-MASK, 36, 37f, 52f–53f, 72f–73f, 107
Grammetry, 157f, 157–158
Guided surgery
advantages of, 125b
in fully edentulous mandible, 50f–55f
implant placement using, 130

H

Healing abutments, 148
Hex driver, 47, 47f, 86f, 100
Hygiene, 109, 118

I

Immediate denture
description of, 33, 33f
implant-supported prosthesis conversion of, 107–108
Immediate loading, 130
Immediate provisionalization, 35–37, 36f–38f
Immediately loaded implants
prosthesis used for, 15
success rates for, 5
Implant(s)
anchorage of, 14–15
angulation of, 14
axial placement of, 10, 10f
delayed loading of, 13
direction indicators for, 46, 46f, 65, 66f
failure of, 116
in mandible, 33
in maxilla, 32
mobility of, 14–15
osseointegration of, 109, 130
outcomes of, factors guiding, 14–15
surgical guides in placement of, 125–126
teeth extraction before, 149f
tilted. See Tilted implants.
virtual placement of, 125
Implant company, 165–166
Implant stability quotient, 14–15
Implant-supported prosthesis, 107–108
Impressions
for definitive prosthesis, 110–112
for provisional prosthesis, 108, 110f
Inferior alveolar nerve, 31

Information sharing, 168–169

Interarch space, 59f, 119

Intraoral examination, 22

Intraoral scanners, 156, 156f

Intraoral scans, 153

ISQ. See Implant stability quotient.

L

Layered data integration, 153–154, 154f

Lead call team member, 170–171

Life expectancy, 9

Lindemann bone bur, 61, 62f

Lip line, 24–25, 25f

M

M-4 configuration, 16, 17f

Machine learning, 143

Mandible

bone resorption in, 27f

digital workflow application to, 131, 137f–143f

fully edentulous. See Fully edentulous mandible.

implant positioning in, 33

partially edentulous. See Partially edentulous mandible.

Marcaine, 42, 59

Marius bridge, 14

Marketing, 172–174

Master cast

final impressions for, 111, 111f

verification jig for, 111–112, 112f

Maxilla

bone, anchorage capacity of, 8f

bone resorption in, 26f

digital workflow application to, 131, 131f–137f

edentulous

anterior implants for, 32

crestal bone ridge of, 30

fully. See Fully edentulous maxilla.

partial. See Partially edentulous maxilla.

tilted implants in restoration of, 15–16, 15f–16f, 30

implant positioning in, 30–31, 31f

Mental nerve, 30

Midcrestal incision, 60

Mucoperiosteal flap, 31

Multiunit abutments, 14f, 33, 36f–37f, 47, 51f, 66, 85f, 108, 160f

N

Nasopalatine foramen, 31, 32f

Nasopalatine nerve, 59, 59f

O

Occlusion

balanced articulation in, 15

vertical dimension of, 33, 34f, 107, 139f

Older adults, edentulism in, 1

Open-tray technique, for impressions, 110

Orofacial appearance, 2

Osseointegration, 109, 130

Osteotomy

for tilted implants, 43

undersizing of, 44, 61

P

Pain, 3

Palatal flap, 60, 60f

Partially edentulous mandible

alveolar bone availability in, 79

autogenous blood concentrates in, 80f

bone augmentation in, 78

denture duplicate template for, 80f, 81, 82f

description of, 23, 24f

digital workflow application to, 137f

extraction sockets in, 78

illustration of, 78f

preoperative procedure in, 81

socket preservation in, 78

special considerations for, 79

surgical procedure in

abutment attachment, 83–86, 85f–86f, 90f

anterior implants, 83

case study of, 89f–91f

implant placement, 81, 83

incision design, 81, 82f, 89f

osteotomy, 90f

prosthesis fabrication and delivery, 86, 87f–88f

tilted implants, 81, 85f

tissue reflection, 81, 82f

Partially edentulous maxilla

bone augmentation for, 94

computed tomography of, 95

description of, 23, 24f

extraction sockets in, 94, 104

illustration of, 94f

preoperative procedure for, 95

socket preservation in, 94–95

surgical procedure in

abutment attachment, 100, 100f

anesthesia, 96–97

burs used in, 97

case study of, 101f–104f

definitive prosthesis fabrication and

placement, 101

denture conversion, 100–101

denture duplicate template, 101f

direction indicators, 100, 100f

immediate denture, 96

implant placement, 97–100, 99f

incision design, 97, 98f

osteotomy, 97

overview of, 95–97

threaded implants, 97

tilted distal implants, 99–100

tissue reflection, 97, 98f–99f

Patient education and engagement, 144

Peri-implantitis, 44, 83, 99, 117, 117f

Periodontal disease, vi

Photogrammetry

advantages of, 145–146

commercial systems, 146f

definition of, 145

description of, 157

FAIR application of, 146–152, 147f–151f

limitations of, 145–146

markers, 147, 147f, 150f

soft tissue scanning, 148–149, 149f–150f

Photographic series, 158f

Platelet-rich plasma, 64, 64f, 79, 80f, 91f, 99

Polymethyl methacrylate, 15, 41, 57, 95, 135f–136f

Posterior tilted implants

description of, 1, 1f

distal tilting of, 15f

Primary stability, 14

Prosthetic protocols

biomechanical factors, 106

definitive prosthesis. See Definitive prosthesis.

description of, 106

provisional prosthesis. See Provisional prosthesis.

Prototypes, 155, 159

Provisional prosthesis

CAD design of, 129

complications of, 118–119

delivery of, 108–109

denture conversion to implant-supported prosthesis, 107–108

fabrication of, 107

final impressions, 108

hygiene for, 109

Provisionalization, immediate, 35–37, 36f–38f

PRP. See Platelet-rich plasma.

Pterygoid implants, 16

R

Radiographic analysis, 22–23

Referrals, 173–174

Remote consultations, 143

Removable dentures
advantages of, 6t
disadvantages of, 6t
removable overdenture versus, 9f
Removable overdenture, 6, 9, 10f
Resonance frequency analysis, 15
Retromolar pads, 47
RFA. See Resonance frequency analysis.
Ridge-contouring burs, 34, 35f

S

Screw loosening or fracture, 119, 119f, 121
Screw-retained prosthesis, 101
Scripts, 169–170
Sheffield technique, 113
Simple screw test, 113
Sinus membrane, 61, 97
Smile Artist Approach, 155f, 155–156
Smile line, 24–25, 25f, 117f
Staffing, 169–172
Stereolithographic model, 57
STL model. See Stereolithographic model.
Straight abutments, 66
Surgical guides
CBCT fabrication of, 124–126
description of, 33, 164
fabrication of, 124–126, 129–130

T

Telemedicine, 143
3D avatar patient, 154f, 154–155
3D facial scans, 154, 156f, 157
3D printing, 125, 143, 158, 158f

Tilted implants
abutments for, 16
advantages of, 10, 10f, 13
angulation of, 14–16, 17f
apex of, 15
cantilever length of, 13, 13f
distal, 44, 64f
in edentulous maxilla, 15–16, 15f–16f, 30
FAIR procedures and, 14
in fully edentulous mandible, 43f, 44
in fully edentulous maxilla, 64f, 64–65
history of, 13–17
illustration of, 1f
M-4 configuration of, 16, 17f
osteotomies for, 43
in partially edentulous mandible, 81, 85f
in partially edentulous maxilla, 99–100
position of, 16, 17f
posterior, 1, 1f
primary stability of, 14
protocol for, 13
pterygoid implants, 16
tilt amount for, 35
types of, 15–16
V-4 configuration of, 16, 17f
zygomatic implants, 16
Titanium sleeves, 36–37, 36f–37f, 48f, 52f, 54f, 100, 140f
Tooth decay, vi
Tooth loss
causes of, vi
factors associated with, 1
Transition line, 25f
Treatment coordinator, 171–172

Treatment planning
bone density, 25–28
bone volume, 25–28, 26f–27f
case classification, 23, 24f
measurements in
distance to bone, 23–24
lip line, 24–25, 25f
smile line, 24–25, 25f
model evaluation, 28
questions for, 21b
Trough, 35, 35f

U

Unique selling position, 166–167

V

V-4 configuration, 16, 17f
Verification jig, 111–112, 112f–113f
Vertical dimension of occlusion, 33, 34f, 107, 139f
Virtual reality, 143

W

Wax try-in, 33
Wear-related complications, 120

Z

Zygomatic implants
placement of, 6, 8f
as tilted implants, 16